We will begin by reviewing search engines and discussing common strategies for effective web searching. In the remainder of the lab, you will practice applying these strategies to answer a series of questions about the history of computers. Although we will focus on web search throughout the lab, this will be an excellent opportunity to learn a little about the pioneering people and events in this field. It seems like computers have been around forever, so you might be surprised at how recently the world took its first steps in computing.

Discussion and Procedure

Getting Answers with Better Queries

In Chapter 5, we learned the basics of how a web search engine works. This knowledge will help you use search engines like Google, the engine we will use in this lab, effectively, quickly finding the answers to your questions. Using a search engine is quite simple: You provide a query in the form of one or more keywords, and the search engine returns a set of web pages which include the words you specify. The resulting web pages are sometimes called hits. Using a search engine effectively by forming good queries, however, requires some careful thought.

What makes a query good? It all depends on the question you want to answer. The typical search engine user’s primary goal is usually not pages that contain some set of words. Rather, they are looking for the answer to a more general question not necessarily related to web pages. For example, they might be asking, “What are some good recipes for apple pie?” A good query is one whose resulting web pages are useful for answering the original question. A query that is not as good is one whose keywords match pages that are not relevant to the original question.

In the pie recipe case, a simple and obvious query to try would be the following:

![Google Search](image_url)

However, when we tried this query, it returned about 370,000 pages, including many pages that have nothing to do with the food apple pie or how to make it but happen to have the words “apple” and “pie” on them. For example, only two of the ten first hits actually contained recipes, and the rest were irrelevant. Apple Pie USA (second hit) is a nanny placement agency, New York University has a computer science research project called the Apple Pie Parser (third hit), Warm Apple Pie (fourth hit) is a fan site for the American Pie movies, and there is a company in New York called Apple Pie Web Design (ninth hit).

A good query would return pages containing apple pie recipes. In the remainder of this part of the lab, we will discuss several methods for query refinement, modifying your query to return a smaller, more relevant set of results. Although we will be providing instructions specific to
Google, all major web search engines offer equivalent query features, so you should check their respective help pages to find out how to apply these refinement methods.

Use phrases instead of independent keywords. The above query results in pages that contain the words “apple” and “pie,” including pages where the words appear separately. For example, Apple Computer’s web site hosts many movie trailers in their QuickTime movie file format, including the trailer for *American Pie 2*, and this trailer’s page is included in the 370,000 hits. You can narrow your search to only pages containing the words “apple pie” together by putting the phrase in quotes:

![Google Search](image)

This results in 180,000 hits, which is still a very large number, but much fewer than 370,000.

Add keywords you know will be on relevant pages. The phrase query above is better than the original query, but it can be improved further. For instance, the results still include pages for companies selling apple pies, rather than offering recipes for them. One way to refine your query further is by adding keywords that you are certain will be on any page that is relevant to your original question about apple pie recipes. Sugar and cinnamon are almost always ingredients in an apple pie, and you always bake a pie, so this query is likely to return a smaller set of pages without excluding recipes interesting to you:

![Google Search](image)

This query results in about 8,620 pages, most of which actually appear to be apple pie recipes.

Adding keywords for a more specific answer. You might not be interested in sifting through over eight thousand pages of recipes, so, at this point, you might carefully reconsider your original question and see if you can make it more specific. For instance, you might not be such an expert cook, so to find recipes that are at your level, you might add the keyword, “easy”:

![Google Search](image)

This query results in 2,750 results, the vast majority of which are apple pie recipes that claim to be easy to prepare. By this point, most users would just try a few of the pages and call the web search done, but we will extend the example further in order to illustrate a few more useful query refinement strategies.

Exclude keywords that you know do not appear on relevant pages. Many recipes for apple crisp list pre-made apple pie filling as an ingredient, so the above query returns pages with such recipes. To exclude these pages from your results in Google, you can add the keyword “crisp” with a minus sign before it:

![Google Search](image)
Search Tips

easy "apple pie" sugar cinnamon bake -crisp

Google Search I'm Feeling Lucky

This further focuses your result set to 1,750 pages.

Add keyword alternatives for word variations. “Easy” is only one word that describes recipes suitable for beginning cooks, so you might also want to allow pages with the word “simple” on them to be included in your results. Simply adding this keyword to your query, however, would require that both “easy” and “simple” be on the page. Using Google, you can indicate that one or the other (or both) are acceptable by putting “OR” (note capitalization) between the keywords:

Search Tips

easy OR simple "apple pie" sugar cinnamon bake -crisp

Google Search I'm Feeling Lucky

Note that in this case, you are likely to increase the number of hits, but this might be useful if you believe you would otherwise exclude relevant pages.

Restrict your search to a particular domain. While going through some of the results from the above queries, you might notice that you are particularly interested in pages from the allrecipes.com web sites. You can restrict your Google search to pages on web servers in a particular domain by using “site:domain” to your query:

Search Tips

"apple pie" site:allrecipes.com

Google Search I'm Feeling Lucky

The above query finds all pages on servers within the allrecipes.com domain. (Note that there are no spaces around the colon between “site” and the domain name.)

The Challenge: Query Refinement Exercises

Use web searches to find the answers to the questions below. With each answer, write the following:

- the series of queries you used to find the answer, including those which ended up not being so helpful
- an explanation of your search strategy, identifying which of the above query refinement strategies you applied and why
- the URL of the page where you found the answer to the question

If you find an answer to a question on a page found for a previous question, make sure you clearly indicate which URL you found the answer at. A sample response for the first question is provided to help you understand these instructions.

1. IBM produced the first hard disk drive. Find a page on an official IBM web site describing this disk. When was it made, what was it called, and how much storage space
did it offer?

(1) query “IBM” to figure out IBM’s domain name, which is ibm.com
(2) query “site:ibm.com "hard disk”” for pages on IBM’s web site(s) with phrase “hard disk” in them
(3) query “site:ibm.com "hard disk" first” with additional keyword “first” to narrow search

2. Who is often called the “Father of Computing”?

3. What was the “Analytical Engine”?

4. Was the Analytical Engine designed to run on electricity?

5. Who was Ada Lovelace, and how is she related to the “Father of Computing”?

6. Who was Ada Lovelace’s father?

7. What computing “first” is Ada Lovelace known for?

8. The ENIAC is often called the first general-purpose computer, though some question this distinction. In kilograms, how much did ENIAC weigh?

9. What was ENIAC designed to be used for?
10. In what year was the construction of the ENIAC completed?

11. Some claim that other fully programmable, electronic computers were produced before ENIAC. Find at least one example, the year of its production, and who was responsible for its production.